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An Efficient and Accurate Rough Set for Feature
Selection, Classification and Knowledge

Representation
Shuyin Xia, Xinyu Bai, Guoyin Wang*, Deyu Meng, Xinbo Gao, Zizhong Chen, Elisabeth Giem

Abstract—This paper presents a strong data mining method
based on the rough set, which can realize feature selection,
classification and knowledge representation at the same time.
Although the rough set, a popular method for feature selec-
tions, has a good interpretability, its low efficiency and low
accuracy prevent it from immediately being applied to real-
world scenarios. To address the efficiency issue of the rough
set, we discover the stability of the local redundancy (SLR) of
attributes and propose the theorem to rigorously prove it. In
regards to the accuracy issue, we first show that overfitting leads
to the ineffectiveness of rough sets, especially when processing
noise attributes. We then propose relative importance, a robust
measurement for an attribute to alleviate such overfitting issues.
In this paper, we propose a novel rough set framework, which
significantly improves the efficiency and accuracy upon existing
rough set methods. We further develop our rough set framework
by proposing a ”rough concept tree” concept for knowledge
representation and classification. Experimental results on public
benchmark data sets show that our proposed framework achieves
higher accuracies than seven popular rough set methods and
other state-of-the-art feature selection methods.

Index Terms—rough set, attribute reduction, feature selection,
acceleration framework

I. INTRODUCTION

FEATURE selection, also called as attributed selection, is
a foundational process in data preprocessing. Not only

reducing the difficulty of learning, it also alleviates the disaster
of dimensionality. Due to these advantages, past decades have
witnessed rapid developments in this promising direction. To
be more specific, there are three major research directions
regarding feature selection: global optimal search, random
search and heuristic search according to the formation process
of the search strategy subset. The branch and bound method,
which searches the optimal subset when the feature number in
the optimal feature subset is determined in advance, is the only
global search method capable of obtaining the optimum [1]. In
contrast, the random search strategy assigns a certain weight
to each feature during the operation of the algorithm.For
example, the relief series algorithm is a typical random
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search method that selects features according to the weight.
This simple-yet-effective algorithm, although possesses broad
applications, is unable to remove the redundancy and only
be applicable to two classification types [2]. On the other
hand, the floating generalized backward selection method in
heuristic search is a feature selection search strategy that is
more conducive to practical applications. It not only considers
the statistical characteristics between features, but also ensures
the speed and stability of the algorithm operation [3]. The
sound efficiency of the heuristic search strategy comes at a
cost of sacrificing the accuracy regarding the global optimum.
According to whether a selection method is independent of
the learning algorithm, it can be divided into three categories
— filter method, wrapper method and embedded method. The
main idea of the filter method is to score the features, and
then sort the features in a descending order according to their
scores. The wrapper method recognizes feature selection as
a feature subset optimization process, and uses classifiers to
evaluate the feature subset. Since each feature subset needs
to train a classifier, most wrapper methods are inefficient.
Besides, limited by the classifier used by this method, the
feature subset obtained by wrapper methods tends to have
lower versatility. Therefore, prior works of wrapper method
mainly focuses on the optimization process, motivating the
embedded method, where the feature selection is embedded
into the training process.

Feature selection based on the rough set theory belongs to
the filter method. Rough set theory, an effective mathematical
tool to process uncertain, inconsistent and incomplete data,
was first proposed by a Polish scientist, Pawlak, in 1982 [2]. It
has been widely applied in machine learning, data mining and
decision support systems [3]–[9]. Since the forward heuristic
attribute selection algorithm based on the rough set theory can
effectively reduce the time complexity, past decades witnessed
rapid developments in its related fields [10]–[16]. To elaborate,
Miao and Hu redefined the evaluation criteria of attributes in
a decision system from the perspective of mutual information
using the attribute importance as a heuristic search strategy
to reduce the search space during the attribute reduction [17].
Wang, Yu, and Yang designed a heuristic knowledge reduction
algorithm for decision tables using conditional information
entropy as the heuristic. They performed a careful analysis for
informative and algebraic definitions in the rough set theory
[18]. Liang, Chin, Dang, and Yam introduced a new definition
of information entropy and the concept of complementary
information entropy [19]. They validated that their metric can
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be categorized as a fuzzy entropy, which can be used to
measure the fuzzy degree and rough classification of rough
sets. They also proposed a heuristic algorithm based on
complementary information entropy. It is worth noting that all
of these methods, which are designed for specific scenarios,
cannot be used to accelerate rough set as a general method.
In contrast, Qian and Liang [32] proposed the only general
method to accelerate the rough set by introducing the positive
region acceleration and pre-calculation for core attributes.

In fact, the efficiency of rough set is yet to be efficient and
accurate enough. Besides, as far as we know, there are few
studies being capable of improving the accuracy of rough sets
for a wide range of applications. These shortcomings state the
major obstacles of immediate real-world deployments for an
algorithm based on the rough sets. In order to address such
issues, we present the following contributions in this paper:

(1) We propose a rigorously proved theorem to elaborate the
stability of the attribute local redundancy in a rough set, which
can be used to considerably accelerate most of the existing
rough set algorithms.

(2) We discover that overfitting, especially when in a type
of noise attribute, accounts for the ineffectiveness of rough
sets. Our brand-new measurement increases the robustness of
the rough set to the type of noise attribute with an improved
generalizability while significantly enhancing its accuracy.

(3) We propose a novel general framework, RSLRS, which
is not only able to considerably accelerate most of the rough
set methods, but enhance their accuracies as well.

(4) We present the concept of ”rough concept tree” for
knowledge representations and classifications, enabling algo-
rithms based on the rough set to effectively implement feature
selection, data classification and knowledge representation
simultaneously, rather than replying on any other classifiers.

The main contents of subsequent chapters are organized
as follows: Chapter II lists the related work regarding the
basic models of rough sets; Chapter III details the newly
proposed accelerated rough set model based on the attribute
local redundancy; Chapter IV discusses the model of ”relative
importance” which can improve accuracy of feature selection
of rough sets; in chapter V, an efficient and accurate rough
set framework is proposed based on the proposed theorems
and model; in Chapter VI, we develop the rough set so that
it can be effectively used for knowledge representation and
data classification; the experimental results and analysis are
presented in Chapter VII; We conclude our paper in Chapter
VIII.

II. RELATED WORK

A. Filter Methods

The essence of filter methods is to use some indicators
in mathematical statistics to score features, such as Pearson
correlation coefficient, Gini coefficient, Kullback–Leibler di-
vergence, Fisher score, Similarity measure, and etc. Since the
filter method only uses the dataset rather than relying on a spe-
cific classifier, it has strong versatility and is easy to expand.
Compared with wrapper methods and embedded methods,
filter methods have lower algorithm complexity. However, at

the same time, the classification accuracy of filter methods is
usually lower than the other two methods. In addition, because
filter methods only score a single feature rather than the whole
feature subset, the feature subset obtained by filter methods
usually has a high redundancy.

G. Qu et al [20] proposed a generalized Fisher score feature
selection method, which aims at finding a feature subset
to maximize the lower bound of Fisher score. This method
transforms feature selection into a quadratically constrained
linear programming and uses the cutting plane algorithm to
solve this problem. G. Roffo et al proposed a feature selection
method based on graph, which ranks the most important
features by recognizing them as arbitrary clue sets [39]. This
method maps a feature selection problem to an affinity graph
by taking features as nodes, and then evaluates the importance
of nodes by the eigenvector centrality. G. Roffo et al. also
proposed a filtering feature selection method, Inf-FS [40],
which takes features as nodes of a graph and views feature
subset as a path in the graph. The power series property of
matrix is used to evaluate the path, and the computational
complexity is reduced by adding the paths until the length
reaches infinity.

B. Wrapper Methods

Wrapper methods evaluate features using the performance
of learning algorithms, so the classification accuracy of wrap-
per methods is often higher than that of filter methods.
However,limited by the classifier used by this method, the
feature subset obtained by wrapper methods tends to have a
lower versatility. For each feature subset, wrapper methods
need to train a classifier. Therefore, this method usually
has a high computational complexity of, which depends on
the search strategy of the feature subset. However, wrapper
methods evaluate the entire feature subset, rather than a single
feature, and consider the dependency between features, so the
redundancy of the result feature subset is often lower than that
of filter methods.

Support vector machine (SVM) is a popular learning algo-
rithm of the wrapper method. I. Guyon et al proposed a feature
selection method of support vector machine based on recursive
feature elimination [23]. The idea of this method is to construct
the ranking coefficient of features according to the weight
vector generated by SVM during training. In each iteration, the
feature with the smallest ranking coefficient is removed. At the
end of this algorithm, a descending sorting of all the features
is obtained. J. Guo et al proposed a feature selection method
based on distance-based clustering, which uses a triplet-based
ordinal locality preserving loss function to capture the local
structures of the original data. Meanwhile, this method defines
an alternating optimization algorithm based on half-quadratic
minimization to speed up the optimization process of this
algorithm [24]. In order to overcome the issue that only single
feature is considered in the filtering method, a joint learning
framework for feature selection and clustering, namely Depen-
dence Guided Unsupervised Feature Selection (DGUFS), was
proposed [25]. DGUFS is a projection-free feature selection
model based on L2,0-norm equality constraints and defines two
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dependence guided terms to enhance the dependence among
original data, cluster labels and selected features.

C. Embedded Methods

Embedded methods embed feature selection as a compo-
nent into the learning algorithm. The feature subset can be
obtained when the training process of the learning algorithm
is completed. The embedded method is similar to the filter
method. However, it determines the score of features via
model training, which is different from the filter method. The
main idea of this method is to select features important to
the model training when to determine the model. Meanwhile,
an embedded method is compromise to a filter method and
a wrapper method. Compared with the filter method, the
embedded method can achieve a higher classification accuracy.
When comparing to wrapper methods, embedded methods
have a lower algorithm complexity and are more difficult to
suffer from the overfitting issue.

P. Bradley et al proposed an embedded feature selection
method based on concave minimization and support vector
machine [26], which finds a separation plane to distinguish two
point sets in the n-dimensional feature space which uses as few
features as possible. This method minimizes the weighted sum
of the distance between the wrong classification points and
the boundary plane while maximizing the distance between
the two boundary planes of the separation plane. Embedded
methods are often based on regression learning algorithms.
F. Nie et al [27] proposed an efficient and robust feature
selection method, which uses a loss function based on L2,1-
norms to remove the outliers. This method adopts joint L2,1-
norms minimization on loss function and regularization and
proposes an effective algorithm to solve a series of joint L2,1-
norms minimization problems. Y. Yang et al proposed a feature
selection method named Unsupervised Discriminative Feature
Selection (UDFS) [28]. UDFS optimizes a L2,1-norm regular-
ized minimization loss function, which utilizes discriminative
information and local structure of data distribution.

D. Rough Set Theory

The rough set theory mainly focuses on the information
granulation and approximation. An equivalence relation gran-
ulates the sample space into disjoint equivalence classes,
or sample information granules. It uses upper and lower
approximation bounds to characterize the uncertainty of the
information granules in order to approximate the arbitrary
knowledge in the sample space. Classic rough set theory is
defined on the basis of a strict equivalence relation and an
indiscernibility relation. In this section, in order to lay a
foundation for our theorem and proof, we review some of
the basic concepts of they rough set theory, which has been
presented in our previous work [29]. Here we first introduce
information systems and indistinguishable relations.

Definition 1. [29] An information system is a quarternion
〈U,A, V, f〉, where: U = {x1, x2, ..., xn} denotes a non-
empty finite set of objects. U is called the universe; A =
{a1, a2, ..., am} denotes a non-empty finite set of attributes;
V =

⋃
a∈A Va denotes the set of all attribute values, where Va

denotes the value range of attribute a; f = U×A→ V denotes
a mapping function. ∀xi ∈ U, a ∈ A, we have f (xi, a) ∈ Va.
If the set of attributes A in the information system above
satisfies: A = C ∪ D,C ∩ D = Ø, D 6= Ø, where C is
the conditional attribute set and D is the decision attribute
set, then the information system is called the decision system
〈U,C,D〉.

Definition 2. [30] Let 〈U,A, V, f〉 be an information system.
∀x, y ∈ U and B ⊆ A, the indistinguishable relationship
IND(B) of the attribute subset B is defined as

IND(B)={(x, y) ∈ U×U |f(x, a) = f(y, a),∀a ∈ B}. (1)

In fact, (x, y) ∈ IND(B) shows that the values of samples
x and y are completely consistent under the attribute subset
B; that is, under the description of the attribute subset B, the
samples x and y are indistinguishable.
IND(B) is symmetric, reflexive, and transitive; that is,
∀B ⊆ A, IND(B) is an equivalence relation on U (ab-
breviated RB). IND(B) creates a partition of U , denoted
U/IND(B) and abbreviated U/B. The characteristics of
U/B are as follows: Suppose U/B = {X1, X2, ..., Xk}, if
Xi, Xj ⊆ U , Xi ∩Xj = Ø(i 6= j),

⋃k
i=1Xi = U , then U is

divided into k parts by IND(B) and they form a partition of
U . An element [x]B = {y ∈ U |(x, y) ∈ IND(B)} in U/B
is called an equivalence class. This leads us to our next set of
definitions, approximations based on the equivalence relation
RB .

Definition 3. [30] Let 〈U,A, V, f〉 be an information system.
∀B ⊆ A there is a corresponding equivalent relationship RB

on U . ∀X ⊆ U , the upper and lower approximations of X
with respect to B are defined as follows:

RBX = ∪{[x]B ∈ U/B|[x]B ∩X 6= ∅} , (2)

RBX = ∪{[x]B ∈ U/B|[x]B ⊆ X} . (3)

The lower approximation RBX represents the set of samples
in U that are determined to belong to X according to the
equivalence relation RB . It essentially reflects the ability of
the equivalence relation RB to approximately describe the
knowledge contained in X by a partition of the knowledge of
the universe U . It is also commonly called as the B positive
region of X in U , abbreviated as POSB(X) in the following
contents of the paper.

Definition 4. [30] Let 〈U,C,D〉 be a decision system. We
notate the partition of the universe U by the decision attribute
set D into L equivalence classes by U/D = {X1, X2, ..., XL}.
∀B ⊆ C, there is a corresponding equivalent relationship RB

on U . The upper approximation and the lower approximation
of D with respect to B are respectively defined as

RBD =

L⋃
i=1

RBXi, (4)

RBD =

L⋃
i=1

RBXi. (5)
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Definition 5. [30] Let 〈U,C,D〉 be a decision system. ∀B ⊆
C, the positive region and boundary region of D with respect
to B are respectively defined as:

POSB (D) = RBD, (6)

BNB (D) = RBD −RBD. (7)

The size of the positive region reflects the separability of
the classification problem in a given attribute space. The larger
the positive region, the more detailed the classification problem
can be described with using this attribute set. We find it useful
to describe it mathematically: the dependence of D on B is
defined as

γB (D) =
|POSB (D)|
|U |

, (8)

where |·| is the cardinality of the set and 0 ≤ γB (D) ≤
1. Obviously, the larger the positive region, the stronger the
dependence of D on B.

The dependency function defines the contribution of condi-
tional attributes to a classification, so it can be utilized as an
evaluation index for the importance of the attribute set.

Definition 6. [31] Given a decision system 〈U,C,D〉, for
all B ⊆ C and a ∈ C −B, the importance of a relative to B
is defined as

SIG (a,B,D) = γB∪a (D)− γB (D) . (9)

The most widely used rough set is forward heuristic. It is
not only efficient but can generate different knowledge rules
as well. Therefore, the forward heuristic rough set is set as the
default method in this paper. To be more specific, it uses the
measurement SIG in (9) to select attributes in a forward way.
The selection result C ′ is initialized with Ø. For each attribute
a in the attribute C − C ′, the one with the largest value of
SIG(a,C ′, D) and is greater than 0 will be selected into C ′.
This process is repeated until there is no more attribute greater
than 0 in SIG(a,C ′, D).

III. SPEED UP ROUGH SET USING THE STABILITY OF
LOCAL REDUNDANCY OF AN ATTRIBUTE

A. Motivation

In [32] and [34], three most important theorems for gener-
ally speeding up the rough set that can be described as follows:

Theorem 1 Given a decision system 〈U,C,D〉, for B ⊆ C,
we have

POSB(D) ⊆ POSC(D). (10)

That is, the positive region of a attribute set must belong
to the positive region of its parent attribute set. According
to Theorem 1, we deduce that for any given parent attribute
sets, the positive region of a child attribute set is not needed in
order to calculate the positive region of the parent attribute set.
Therefore, a general rough set algorithm can be accelerated.

Theorem 2 Let 〈U,C,D〉 be a decision system. Let R′ ⊆
R ⊆ C and a ∈ R be a given attribute, and let R − R′ be
a relative reduction of R. If POSR−a(D) 6= POSR(D), i.e.,
that a is a single non-redundant attribute, a is not a redundant

attribute in R − R′. In other words, a single non-redundant
attribute is a core attribute.

Theorem 2 indicates that is that the non-redundant attributes
relative to given attribute set is also the non-redundant attribute
relative to its child attribute set. Therefore, the non-redundant
attributes in the all attributes are not needed to be considered
at any time. The calculation cost of attribute combination can
be reduced accordingly. We find that, from the perspective
of the stability, Theorem 1 locates the stability of positive
region while Theorem 2 finds the stability of non-redundancy
attribute. That is, a redundant attribute relative to the child
attribute set under the conditions in Theorem 1 is also the
redundant attribute relative to its parent attribute set. In other
words, the redundancy of the attribute is stable. Therefore, this
type of redundant attributes will not be considered in the later
feature selection process of a rough set, such that the rough
set can be accelerated.

Theorem 3 [34] {The stability of redundancy (SR)
attribute}. Given a decision system 〈U,C,D〉, let R ⊆ C
and a ∈ C is a given attribute. If U/R = U/(R + a), a is a
redundant attribute relative to R.

Theorem 3 describes a finding on redundancy attributes for
further speeding up the rough set. However, the condition to
decide whether a attribute is redundant or not is rigorous.
Therefore, in some cases, one may not be able to observe
a significant acceleration. In the following theorem, we find
that, even for most of those non-redunant attributes, there
exists the local redundancy so some of the calculations for
the equivalence class can be avoided. The theorem related to
the local redundancy is detailed in the next section.

B. The Stability of Local Redundancy of an Attribute for
accelerating Rough Set

Inspired by Theorem 3, we describe the definitions of the
active region and the non-active region.

Definition 7. {Active Region and Non-Active Region}.
Let 〈U,C,D〉 be a decision system. Let R ⊆ C and
a ∈ C (but a /∈ R) be a given attribute. The equiva-
lence class that U is divided into under the attribute set
R is U/R = {X1, X2, ..., Xi, Xi+1, ..., Xl} and the equiv-
alence class that U is divided into under the attribute a is
U/a ={X ′1, X

′

2, ..., X
′

k, X
′

k+1, ..., X
′

s}. For ∀ j ∈ 1, 2..., i,
if Xj ⊆ X

′

t(t = 1, 2, ..., s) exists, then we define set
NACTa(R) = X1 ∪X2 ∪ ...∪Xi as the non-active region of
attribute a relative to R and set ACTa(R) = Xi+1 ∪ ... ∪Xl

as the active region of the attribute a relative to R.
Based on Definition 7 and Theorem 3, a better acceleration

method is presented in Theorem 4.
Theorem 4 {The stability of local redundancy (SLR) of

attributes}. Given a decision system 〈U,C,D〉, let R ⊆ C
and a ∈ C (but a /∈ R) be a given attribute. The equiv-
alence class that U is divided into under the attribute set
R is U/R = {X1, X2, ..., Xi, Xi+1, ..., Xl} and the equiv-
alence class that U is divided into under the attribute a is
U/a ={X ′1, X

′

2, ..., X
′

k, X
′

k+1, ..., X
′

s }. If Xj ⊆ X
′

t(j =
1, 2, ..., i, t = 1, 2, ..., s), the active region of a relative to
R on U is represented as ACTa(R) = Xi+1 ∪ ... ∪Xl, and
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the non-active region of a relative to R as NACTa(R) =
X1∪X2∪ ...∪Xi. We only need to pay attention to ACTa(R)
to determine whether a is a non-redundant attribute relative
to the attribute set R.
Proof. let U/R = {X1, X2, ..., Xi, Xi+1, ..., Xl} ,
NACTa(R) = X1∪X2∪...∪Xi, ACTa(R) = Xi+1∪...∪Xl.

Since NACTa(R) is the non-active region of a relative to
R, we have

Xj ⊆ X
′

t(j = 1, 2, ..., i, t = 1, 2, ..., s), (11)

Xj ∩X
′

t = Xj , (12)

U/(R+ a) = {X1 ∩X
′

1, X1 ∩X
′

2, ..., X2 ∩X
′

1,

X2 ∩X
′

2, ..., Xi ∩X
′

1, ..., Xl ∩X
′

s}

=
{
X1, X2, ..., Xi, Xi+1 ∩X

′

1, Xi+1 ∩X
′

2, ..., Xl ∩X
′

s

}
=

{
NACTa(R), Xi+1 ∩X

′

1, Xi+1 ∩X
′

2, ..., Xl ∩X
′

s

}
.

(13)
Focusing only on ACTa(R), i.e., that equivalence classes

are divided on ACTa(R) and not on NACTa(R), we have,

U/(R+ a) = NACTa(R) +ACTa(R)/(R+ a)

= NACTa(R) + {Xi+1 ∩X
′

1, Xi+1 ∩X
′

2, ..., Xl ∩X
′

s}
= {NACTa(R), Xi+1 ∩X

′

1, Xi+1 ∩X
′

2, ..., Xl ∩X
′

s},
(14)

which is the same as (26).
⇒ Focusing only on ACTa(R) can determine the

redundancy of a relative to the attribute set R.

Theorem 4 shows that, regardless of whether an attribute is
redundant or not, its non-active region does not need to par-
ticipate into further calculations, which results in a significant
improvement for the performance. Here we use an example to
demonstrate the theorem. Supposing that U = {x1, x2, ..., x8}
is a universe, C = {a1, a2, ..., a6} is a set of conditional
attributes containing six attributes and D = {d} is a set of
decision attributes. there is a decision system 〈U,C,D〉, as
shown in Table I.

TABLE I
DECISION SYSTEM 〈U,C,D〉

a1 a2 a3 a4 a5 a6 d

x1 1 0 1 1 0 1 1
x2 0 0 1 1 0 1 0
x3 1 1 0 1 0 1 0
x4 1 1 0 1 0 1 1
x5 0 0 0 0 1 0 0
x6 1 0 1 1 0 0 0
x7 1 0 0 0 1 1 1
x8 1 1 1 0 0 0 1

From Table I, we can calculate the following results.
U/D = {{x1, x4, x7, x8} , {x2, x3, x5, x6}},
U/C={{x1} , {x2} , {x3, x4} , {x5} , {x6} , {x7} , {x8}},
POSC(D) = {x1, x2, x5, x6, x7, x8}.
U/(C−{a1})={{x1,x2},{x3,x4},{x5},{x6},{x7},{x8}},
POSC−{a1}(D) = {x5, x6, x7, x8} 6= POSC(D).

U/(C−{a2})={{x1},{x2},{x3,x4},{x5},{x6},{x7},{x8}},
POSC−{a2}(D) = {x1, x2, x5, x6, x7, x8} = POSC(D).
U/(C−{a3})={{x1},{x2},{x3,x4},{x5},{x6},{x7},{x8}},
POSC−{a3}(D) = {x1, x2, x5, x6, x7, x8} = POSC(D).
U/(C−{a4})={{x1},{x2},{x3,x4},{x5},{x6},{x7},{x8}},
POSC−{a4}(D) = {x1, x2, x5, x6, x7, x8} = POSC(D).
U/(C−{a5})={{x1},{x2},{x3,x4},{x5},{x6},{x7},{x8}},
POSC−{a5}(D) = {x1, x2, x5, x6, x7, x8} = POSC(D).
U/(C−{a6})={{x1,x6},{x2},{x3,x4},{x5},{x7},{x8}},
POSC−{a6}(D) = {x2, x5, x7, x8} 6= POSC(D).

According to the above results, the core attribute set can be
obtained as {a1, a6}.
U/ {a1, a6} = {{x1, x3, x4, x7} , {x2} , {x5} , {x6, x8}},
POS{a1,a6}(D) = {x2, x5}.
U/a2 = {{x1, x2, x5, x6, x7} , {x3, x4, x8}},
{x2} ⊆ {x1, x2, x5, x6, x7}, {x5} ⊆ {x1, x2, x5, x6, x7}.

According to Definition 7, as NACTa2({a1, a6}) =
{x2, x5} , Theorem 1 can be used for acceleration and
Theorem 4 is not needed. Thus, we use a3 as an example to
show the effectiveness of Theorem 4. Also based on Definition
7, NACTa3

({a1, a6}) = {x2, x5, x6, x8}, and the active
region of attribute a3 is ACTa3({a1, a6}) = {x1, x3, x4, x7}.
{x2, x5} does not need to be considered in further calculations
according to Theorem 1 because both of them belong to the
positive region. {x6, x8} do not need to be considered in
later calculations according to Theorem 4 because they belong
to NACTa3

({a1, a6}). Thus, the number of calculations is
decreased after applying Theorem 4.

In addition, we compute POS{a1,a6,a3}(D) according
to whether {x6, x8} are paid attention. If {x6, x8} are
paid attention, POS{a1,a6,a3}(D) = {x1}; otherwise,
POS{a1,a6,a3}(D) = {x1}. Thus, POS{a1,a6,a3}(D) remains
to be the same whether {x6, x8} are paid attention or not. So,
this case demonstrates the effectiveness of Theorem 4.

IV. A ROBUST MEASUREMENT OF EVALUATING THE
IMPORTANCE OF AN ATTRIBUTE FOR IMPROVING

ACCURACY OF ROUGH SET

A. Motivation

In addition to the unfavorable performance, another reason
preventing the rough set from being widely used is its less
competitive classification accuracy. In this section, we show
that the rough set is not robust to one kind of noise attribute,
which widely exists in real data sets to different degree. This
phenomenon can be described as follows.

Table II consists of the information about a group of
students. As shown in this table, C1, C2, C3 and C4 are con-
ditional attributes corresponding to the grades of the students.
D is the decision attribute telling whether a student’s overall
performance is qualified. One can observe that C1 containing
a sequence of values is a noise attribute, which may come
from the negligence of the statistician. However, in a rough
set, this attribute can recognize each sample as a equivalence
and a positive region sample, resulting in the overfitting issue.
Therefore, in the reduction result, there only remains this
attribute. Obviously, this reduction result is incorrect, and the
equivalence rules of this case does not make sense — C1 is
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TABLE II
DECISION SYSTEM 〈U,C,D〉

C1 C2 C3 C4 D

1 3 4 5 1
2 3 4 5 1
3 4 3 2 1
4 3 3 2 0
5 5 5 5 0
6 4 3 2 1
7 4 3 2 1
8 3 3 2 0
9 5 5 5 1

such an extreme case. However, regardless of the presence of
noise attributes, this phenomenon will occur to various degrees
and lead to overfitting in the rough set. The specific reason is
shown in Fig.1.

Fig.1(a) consists of five equivalences, seven positive region
points and two boundary region points. After the attribute
C1 is added, although the number of positive region points
increases from seven to nine, the number of equivalence
classes increases from five to nine. It can be observed that the
increased equivalence classes from the existing positive region
equivalence classes are meaningless for the decision. In other
words, more positive region points can decrease the boundary
region, narrow the decision boundary and make the boundary
clearer. This explains why the existing rough set methods
utilize the number of positive region points as the measurement
to evaluate the importance of an attribute. However, as shown
in Fig. 1, more equivalence classes mean more rules and more
complex boundaries, which is harmful for decision. It may
lead to the overfitting issue, which is never considered in
the existing rough set methods. Considering this problem, the
relative importance is proposed to evaluate the importance of
an attribute in the rough set. We consider both the number of
positive region points and the number of equivalence classes.

(a) (b)

Fig. 1. The equivalence results on the data set in Table (a) the equivalence
results when noise attribute C1 is not added. (b)the equivalence results when
noise attribute C1 is added. Blocks in the same color presents one equivalence
belongs to the positive region. Grey represents the boundary region.

B. Relative importance of an attribute

Definition 8. Let 〈U,C,D〉 be a decision system. ∀B ⊆ C
and a ∈ C −B, the relative importance of a relative to B is

defined as,

RSIG (a,B,D) =
∆ |POSB (D)|

∆ |U/B|

=
|POSB+a (D)| − |POSB (D)|
|U/(B + a)| − |U/(B)|

,

(15)

where |.| denotes the number of the elements in a set. ∆
represents the increased amount. As shown in Definition 8,
both the number of positive region points and equivalence
classes can be considered. To be more specific, more positive
region points and fewer equivalence classes provide us with a
better result. For the first attribute selection, the initial number
of positive region points and equivalence classes are both equal
to 0. Because the acceleration strategies in Theorems 2 may
affect the denominator of the relative importance model, we do
not apply them when adopting the relative importance model.

V. AN EFFICIENT AND ACCURATE ROUGH SET
FRAMEWORK

Based on the aforementioned theorems regarding the stabil-
ity of redundancy attributes and the relative importance model,
we propose the novel RSLRS framework to accelerate rough
set methods. Here we provide a definition useful to structure
our framework. As shown in Fig. 2, there are five main steps
of our framework.

Fig. 2. A flow chart of the RSLRS framework

The first step is to initialize C
′

= C,C
′′

= Ø, U
′

= U −
POSC′′ (D), and then comes the second step. For ∀ai ∈ C

′
,

we calculate the active region ACTciU
′

and RSIG(ci, C
′′
, D)

on ACTciU
′
. According to Theorem 4, in the next step, we

only need to decide whether there is a change in ACTciU
′
,

so as to reduce the repeated determination of samples.
Regarding the third step, if ACTai

U
′

= Ø, we remove
ai from C

′
using Theorem 3, obtaining that C

′
= C

′ − ai.
According to Theorem 3, the attribute ai does not help to
distinguish U ′, thus it is a redundant attribute relative to the
reduction result. By removing ai from C ′, we reduce the
number of attributes in subsequent iterations. At this step, we
achieve a further acceleration on the reduction algorithm for
the classical rough set attributes.

At the fourth step, we select an attribute a for C ′, which
has the largest value of RSIG(ai, C

′′
, D). A larger value

of RSIG(ai, C
′′
, D) will lead to a stronger representation

ability. We then add the selected attribute a to the non-
redundant attribute set C

′′
and remove a from C

′
, such that

C
′′

= C
′′ ∪ a and C

′
= C

′ − a. Thereafter, we calculate
the lower approximation of the updated C

′′
on U

′
(i.e., the
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positive region of C
′′

on U
′
) and update the data set U

′
using

Theorem 1 such that U
′

= U
′ − POSC′′ (U

′
). On the basis

of updating the data set U
′
, we update ACTciU

′
and have

ACTciU
′

= U
′ ∩ ACTciU

′
. Therefore, the active region of

an attribute is decreased while the later calculation is further
accelerated.

After performing the above four main steps, we proceed to
the next step based on whether U

′
or RSIG(ai, C

′′
, D) is an

empty set or not. If U
′

is not an empty set, we repeat step 2 as
well as the following steps until either of the two conditions
can be reached. Following the flowchart outlined in Fig. 2,
we present the algorithmic details in Algorithm 1, where we
propose the rough set using the model of relative importance
and stability of local redundancy of attributes. We call it as
relative stability of local redundancy rough set (RSLRS).

Algorithm 1 Attribute reduction algorithm
Input: A decision system 〈U,C,D〉;
Output: The reduction result C

′′
;

1: Initialize C
′

= C,C
′′

= Ø;
2: for ai ∈ C ′ do
3: Calculate ACTai

(C
′′
), and both POSai+C′′ (D) and

RSIG(ai, C
′′
, D) on ACTai

(C
′′
); //Apply Theorem 4.

4: if ACTai
(C
′′
) = Ø then

5: C
′

= C
′ − ai; //Apply Theorem 3.

6: end if
7: end for
8: Select a = max{(RSIG(ai, C

′′
, D))}; //Select the at-

tribute with the biggest relative importance from among
the remaining attributes.

9: if RSIG(a,C
′′
, D) > 0 then

10: C
′′

= C
′′ ∪ {a};

11: C
′

= C
′ − a;

12: U = U − POSC′′ (D); //Remove the positive region
under a from U using Theorem 1.

13: else
14: Return C

′′
.

15: end if
16: if U 6= Ø then
17: Go to Step 2;
18: else
19: Return C

′′
.

20: end if

VI. KNOWLEDGE REPRESENT AND DATA CLASSIFICATION
USING ROUGH SET

Rough sets can extract and generate knowledge rules. How-
ever, at present, there is no effective way to organize or
to express the knowledge rules obtained by rough sets. To
remedy this deficit, we present a knowledge representation
method for rough set in this section. Take the data set of a
disease as an example. The reduction result using Algorithm
1 is shown in Table 1, in which only three attributes (i.e.,
A, B and C) are selected. The importance of them are B,
A and C respectively. The three attributes in the data set

represent the physical sign level data, and the +1 and -1 in
the decision attribute indicate being diseased or non-diseased.
Inspired by the concept lattice [33], we propose the knowledge
representation called rough concept tree(RCT) for rough sets,
as shown in Fig. 3. In the RCT, each node represents a
”knowledge point” or ”concept node”, which consists of two
parts — a sequence with both attributes whose values are
called as ”intent”, and its corresponding equivalence called
”extent” as the second part. These two parts are corresponding
to that in the first row, first column and that in the second
row, first column, respectively. In each ”concept node”, the
”extent” is corresponding to the objects in an equivalence and
the ”intent” is corresponding to some attributes. Their values
are borrowed from concept lattice. Besides, in a concept node,
the value in its second row and second column counts the
number of objects in its extent, and the value in its first row
and second column represents the label of the extent, i.e., the
equivalence class. If this value is a number, it suggests that
the equivalence class belongs to the positive region and this
concept node can describe a certain knowledge. Otherwise,
the value is a question mark, indicating that the equivalence
class belongs to the boundary region and can not describe a
certain knowledge. As for the second layer of RCT in Fig. 3
corresponding to the attribute B, the second node represents a
knowledge point (or a ”concept node”) which consists of an
extent (i.e., an equivalence class) with the 1th, 9th and 12th

points when the value of the attribute B is equal to 2, and
the number of objects in the equivalence class is equal to 3.
The equivalence class belongs to the positive region and its
label is equal to ”+1”. Similarly, the second node in the third
layer represents a knowledge point with an equivalence class
containing the 5th, 6th, 10th and 14th points when the value
of the attributes B and A are equal to 4 and 2, respectively.
The question mark in this node represents that the equivalence
class belongs to the boundary region. The RCT is ordered by
the importance of attributes. The higher an attribute is, the
greater the importance will be. Since the RCT is ordered, the
extent corresponding to a given intent is fixed.

TABLE III
TAKE A DISEASE DATA AS AN EXAMPLE

Objects 1 2 3 4 5 6 7 8 9 10 11 12 13 14
A 1 1 1 1 2 2 1 1 1 2 1 1 1 2
B 2 4 5 5 4 4 4 4 2 4 3 2 4 4
C 1 1 1 1 3 3 1 1 1 2 1 1 1 3
Label +1 -1 +1 +1 -1 -1 -1 -1 +1 +1 -1 +1 -1 +1

In a CRT, as shown in Fig. 3, all non-leaf nodes belong to
boundary region, i.e., the nodes containing a question mark,
indicating that the labels of the objects in a non-leaf node
are not identical. Some leaf nodes belongs to the positive
region, and others belongs to the boundary region, such as the
green node in Fig. 3. In classification problems, as mentioned
above, the leaf nodes belonging to the positive region can
clearly describe the certain knowledge. The more objects in
the extent and the fewer attributes in the intent in a concept
node, the stronger the corresponding knowledge representation
ability will be. Take Fig. 3 as an example. The two red nodes
have the highest knowledge representation ability. On the one
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hand, regarding the two equivalence classes, the extents in the
two nodes can describe the largest collection of objects, so
their generalizabilities are among the best; On the other hand,
the fewer attributes can lead to a higher generalizability when
other conditions are close to each other. The scale of rough
concept tree is much smaller than the concept lattice, which
overcomes the inefficiency of the concept lattice method. In
summary, we provide a rough concept tree to organize and
describe the knowledge rules obtained from forward rough
sets. In addition, it is worth noting that, to be convenient for
display in some large-scale RCTs, the names of attributes in
the first row and first column of each concept node can be
neglected because the RCT is ordered as shown in Fig. 4, and
the attributes can thus be easily derived.

As shown in Fig. 3, RCT can be considered as a spe-
cial decision tree. The rough set can be used for decision
in classification problem according to the decision process,
although RCT is not a rigours decision tree because its nodes
contain intent and extent instead of only objects. However,
in the previous work [34], since only the equivalence classes
in the positive region classes describe certain knowledges,
they are used for decision in classification. However, this will
not utilize the uncertain information in equivalence classes
belonging to boundary region though the information is also
useful. Therefore, its classification accuracy is low. In this
paper, learning from the general decision tree algorithm, we
also use knowledge information of the boundary region for
decision by introducing the voting mechanism. Using the green
node belonging to boundary region as an example, its decision
label equals to the majority label in its extent, i.e., -1.

Fig. 3. Knowledge representation of rough concept tree and rough set
classifier

Another challenge of the classification problem using rough
sets is that how a classification task is completed using the
RCT when any values of a new point in a test data set do not
appear in the training set. For example, we need to predict
the label of a person whose data values on attributes A, B
and C are equal to (4.2,2.3,3) respectively using the RCT in
Fig. 3. However, the value 4.2 does not appear in the attribute
A, and the value 2.3 does not appear in the attribute B. To
address this problem, for a value that does not appear in the
existing data, we can use the closest value to approximate
and replace it. Given a data set U containing n points and

d dimensionality and a point (Ci
1, C

i
2, ..., C

i
d) ∈ U , for an

unknown point (C1, C2, ..., Cd), its values can be transformed
using the follow mathematical model:

f(C1,C2...Cd)=(C∗1 ,C
∗
2 ...C

∗
d ),s.t.



C∗1=min {dis(Ci
1,C1)}

C∗2=min {dis(Ci
2,C2)}

· · · · · ·
C∗d=min {dis(Ci

d,Cd)}

,i=1,2...n,

(16)
where (Ci

1, C
i
2, ..., C

i
d) ∈ U, i = 1, 2..., n. Using the value

4.2 in attribute A as an example, its closest value in attribute A
is equal to 4, and in attribute B is equal to 2. Therefore, (4.2,
2.3, 3) is transformed to be as (4,2,3), and its label is equal
to -1 according to RCT in Fig. 3 using the voting mechanism.
The rough set classifier (RSC) is a rare classifier with good
interpretability. As far as we know, logistic regression (LR) is
the only classifier with this characteristic. Considering that LR
is widely used in financial sector and other field, we include
LR for comparison with RSC in the next section. In addition,
RSC can provide an interpretability different from LR using
the RCT shown in Fig. 3.

VII. EXPERIMENTS

In this section, we compare our algorithm with other seven
widely-used or state-of-the-art attribute selection algorithms
on ten benchmark datasets randomly selected from the UCI
machine learning library. Relevant metadata of these data
sets are summarized in Table V. We choose seven baseline
algorithms, including two rough set attribute selection
algorithms and six other attribute selection algorithms.
The former two algorithms include the classical rough set
algorithm and its acceleration version using Theorem 1.
Only the classical one is used for comparison in accuracy
because both of them have the same attribute selection
results. The latter six algorithms include CFS [23], Fisher
[20], ILFS [35], [40], Laplacian [41], LASSO [37], and
Mutinffs. All these six algorithms use the implementation
provided in the Feature Selection Code Library (FSLib) [40]
(https://www.mathworks.cn/matlabcentral/fileexchange/56937-
feature-selection-library). Regarding all eight algorithms for
comparison, 10-fold cross-validation is used to evaluate the
reduction results, and the average of the five classification
accuracies is used as the final result.

A. Effectiveness of RSLRS in attribute selections

The experimental results of different attribute selection
methods in accuracy are shown in Table IV. It can be observed
that the RSLRS can provide a higher accuracy than other
methods on most data sets, especially when comparing to
CRS, because the model of relative importance evaluation can
alleviate the overfitting issue in a rough set. Therefore, the
RSLRS presents a higher generalizability than other rough set
methods.
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TABLE IV
CLASSIFICATION ACCURACY OF FRPOS

cfs fisher ilfs laplacian lasso mutinffs RSLRS CRS

anneal 0.9249±0.0161 0.9249±0.0161 0.9311±0.0161 0.9249±0.0161 0.9086±0.0200 0.9249±0.0161 0.9600±0.0151 0.8609±0.0097
Healthy Older People2 0.9717±0.0113 0.9724±0.0112 0.9717±0.0113 0.9311±0.0277 0.9311±0.0277 0.9724±0.0112 0.9739±0.0116 0.9561±0.0145
hepatitis 0.8134±0.0546 0.8071±0.0639 0.8001±0.0564 0.8134±0.0546 0.8134±0.0546 0.8071±0.0639 0.8326±0.0746 0.7867±0.0800
htru2 0.9706±0.0042 0.9734±0.0045 0.9713±0.0043 0.9713±0.0044 0.9736±0.0037 0.9734±0.0045 0.9761±0.0037 0.9759±0.0033
lymphography 0.6964±0.1158 0.7954±0.0938 0.8095±0.0885 0.7254±0.1245 0.7593±0.0902 0.7954±0.0938 0.8353±0.0935 0.7961±0.1324
zoo 0.8281±0.0877 0.8700±0.0806 0.8955±0.0957 0.8775±0.0867 0.8193±0.0780 0.8700±0.0806 0.9214±0.0880 0.8833±0.0542
letter 0.6908±0.0083 0.6250±0.0111 0.6827±0.0117 0.5462±0.0128 0.6540±0.0119 0.6250±0.0111 0.7148±0.0105 0.6539±0.0107
GINA 0.8512±0.0242 0.8718±0.0222 0.8668±0.0199 0.8281±0.0202 0.8322±0.0189 0.8674±0.0166 0.8135±0.0243 0.7380±0.0274
ionosphere.csv 0.8415±0.0655 0.8386±0.0605 0.8446±0.0657 0.8445±0.0722 0.8384±0.0658 0.8386±0.0605 0.7813±0.0623 0.7813±0.0623
sensorReadings.csv 0.5565±0.0545 0.6241±0.0321 0.6454±0.0385 0.6146±0.0240 0.6252±0.0295 0.6241±0.0321 0.6083±0.0412 0.6253±0.0228
vowel.csv 0.4305±0.1500 0.4359±0.1575 0.4177±0.1596 0.4345±0.1651 0.3468±0.1489 0.4359±0.1575 0.3982±0.1505 0.3977±0.1670

TABLE V
DATASET INFORMATION

Data sets Features Samples

anneal 21 798
Healthy Older People2.csv 9 22646
hepatitis.csv 20 155
htru2 9 17898
lymphography.csv 19 148
zoo.csv 17 101
letter 17 20000
GINA 971 3153
ionosphere.csv 33 351
sensorReadings 25 5456

B. Effectiveness of rough set classifier and knowledge repre-
sentation

Table VI presents the accuracies of each method. It can
be observed that the RSC has a higher accuracy than others,
including LR, on approximately half of the data sets. The
knowledge nodes in the RCT consisting of both ”intent”
and ”extent”, as mentioned above, are very useful in many
fields. Using the data set zoo as an example, there are sixteen
conditional attributes including hair, feathers, eggs, milk, air,
aquatic, predator, teeth, backbone, breath, venom, fins, legs,
tail, whether it is domestic or not and catsize. The decision
attribution of the zoo data set is the animal type such as
mammals, fish, birds, invertebrates, insects, amphibians and
reptiles, whose corresponding values range from 0 to 6. The
RCT on the zoo is shown in Fig. 4. In the RCT, all the
knowledge nodes without a question mark can describe the
certain knowledge to determine the animal type. Among them,
the three knowledge nodes in red contain the most objects
and have the largest knowledge description ability. For a new
data point of an animal, if its third conditional attribute, i.e.,
milk, is equal to 1, we can use this knowledge point to assign
it to the first animal type, i.e., mammals. In summary, the
animals that produce milk are all mammals. Similarly, the
other two red knowledge nodes indicate that an animal which
does not produce milk with 2 legs is a bird; an animal with
no legs but with fins which does not produce milk is a fish.
These statements are easy to understand and to validate from
a biological point of view.

TABLE VI
ACCURACY COMPARISON BETWEEN ROUGH SET CLASSIFIER AND LOGIC

REGRESSION

LR RSC

anneal 0.8609 0.8271
Healthy Older People2 0.9561 0.9285
hepatitis 0.7867 0.7221
htru2 0.9759 0.9620
lymphography 0.7961 0.7167
zoo 0.8833 0.9409
letter 0.6539 0.8362
GINA 0.7380 0.6492
ionosphere 0.7813 0.8576
sensorReadings 0.6253 0.8198
vowel 0.3977 0.5622
ave 0.7687 0.8020

C. Efficiency of RSLRS

In this section, we compare the efficiency among mul-
tiple popular rough set algorithms. For a fair comparison
in efficiency between different acceleration strategies in the
rough set, the relative importance model is used in all the
three rough set algorithms so that all of them have the same
reduction results. The efficiency results of the experiment
are shown in Fig. 4. Logarithm of running time is used to
make all the results easier to visualize. It can be observed
that the efficiency of the RSLRS is significantly improved in
comparison with other acceleration methods for rough sets
because our RSLRS framework can considerably decrease the
number of equivalence classes calculation in computation for
positive region using the stability of local redundancy.

VIII. CONCLUSION

This paper presents an effective framework to accelerate the
rough set and improve its accuracy by proposing the theorem
regarding the stability of the local redundancy of attributes
and the model of relative importance. Besides, we develop the
rough set to be a classifier and knowledge presentation tool.
To the best of our knowledge, this work has enabled the rough
set to be the only data mining method inherently effective in
feature selection, classification, and knowledge representation.
The experimental results validate that the proposed method can
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Fig. 4. Knowledge repretation of the data set zoo using rough concept tree.

Fig. 5. Efficiency comparison

achieve a higher accuracy compared with the state-of-the-art
attribute selection algorithms in most cases. We also show that
our method is always more efficient than other acceleration
rough set methods. This work significantly improves the ability
of rough sets in feature selections when being applied in real-
world scenarios. Future work will focus on further improving
its efficiency for large-scale input data by parallelizing the
current framework.
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